Blog

 

Filter membrane

Filtration is a common technique for mechanically separatinggases or liquids. A filter membrane serves as a barrier to enable ion exchange, removing macromolecules or bacteria from solution, separating colloids, or recovering gases. Some uses for filtration include producing clean drinking water, generating safe food products, and ensuring a clean environment. It is used for petro-chemical vapor recovery, oxygenation of blood in an artificial lung, and hemodialysis via an artificial kidney. Filter membranes are necessary for ion exchange in a fuel cell and for electrolysis. Filtration is also a key procedure in the laboratory to separate RNA, DNA, cells, proteins, and other molecules.

Read More
 

Pharmaceutical validation

Pharmaceutical validation is important to the manufacturing process to ensure product consistency and safety. It involves regulation of all raw materials and production procedures as well as testing of final product. The general rule of thumb is to follow good manufacturing practice (GMP). This demands that all protocols be up to date and followed by trained personnel. It also requires that equipment be well-maintained and inspected. In the case of clean-room usage the clean room needs to be verified.

Read More
 

Industrial uses of enzymes

Enzymes are used in the food, agricultural, cosmetic, and pharmaceutical industries to control and speed up reactions in order to quickly and accurately obtain a valuable final product. Enzymes are also increasingly being used in the production of biofuels and biopolymers. The enzymes can be harvested from microbial sources or can be made synthetically. Yeast and E. coli are commonly engineered to overexpress an enzyme of interest. This type of enzyme engineering is a powerful way to obtain large amounts of enzyme for biocatalysis in order to replace traditional chemical processes.

Read More
 

Enzyme immobilization onto a magnetic bead solid support

Enzyme immobilization onto solid supports is a convenient way to control and reuse enzymes. The enzyme is a catalyst for a reaction, meaning that it enables or speeds up the chemical conversion from reactants to products. This is a valuable property for both small scale research and large scale industry including biotechnology, pharamaceutical applications, food production, and wastewater treatment. There are many materials used for immobilized enzyme  solid support systems, and a variety of enzymes can be used. Perhaps the most advantages solid support system is one that is magnetic. A magnetic bead is easily recoverable with the application of an external magnetic field. This ensures that reusing the enzyme is quick and easy.

Read More
 

The industrial centrifuge

The industrial centrifuge plays an integral role in the production of more things than one would initially expect. It is a commonly used tool in the food and agricultural sector, at pharmaceutical and biotechnology companies, for environmental management, and in the chemical industry. The word industry conjures up images of combination and creation—adding materials together to produce a final product. However, the separation of materials is just as important as the combination of materials. We can't create a new product until we have pure reactants to work with. This is especially important in the pharmaceutical and biotechnological realms, where reactant purity is essential to the production of a product that is safe for human consumption.This is where the centrifuge comes in. The centrifuge is used to separate heterogeneous mixtures into components varying by density.
Read More
 

A general filtration process

Filtration is a simple technique used to separate solid particles from suspension in a liquid solution. There are many filtration methods available, but all are based on the same general principle: a heterogenous mixture is poured over a filter membrane. The filter membrane has pores of a particular size. Particles larger than the pores will be unable to pass through the membrane, while particles smaller than the pores will pass through unhindered. Additionally, all liquids will pass through. The final result of a filtration process is a collection of residue on the filtration membrane. This residue is therefore effectively separated from the rest of the mixture that passed through the membrane.

Read More
 

Immobilized enzymes

Enzymes are the catalysts for biochemical reactions. As such, they speed up the transition from reactants to products without being consumed in the process. Multiple enzymes can be found in every cell, from bacteria up through to humans. We as humans have found ways to exploit enzymes to produce food products, fuel, pharmaceutical products, biotechnological tools, sensors, and much more. The potential uses for enzymes are seemingly limitless. The creation of solid support structures with immobilized enzymes has improved our ability to reuse enzymes in a controlled manner for a variety of applications. Immobilized enzymes can be reused multiple times before their efficacy is lost. This allows them to be an affordable part of industrial processes.

Read More
 

Advanced Biomagnetic Separation Systems for DNA purification

The traditional biomagnetic separation is a permanent magnet block. The test tube is placed next to the magnet and the magnetic particles in solution move toward the magnet. This system works for very small volumes, but it is not the most efficient method and problems often arise in larger volumes. The downfall of this geometry is that the permanent magnet is only on one side of the tube, which means that the magnetic particles are only drawn to that one side. The magnetic particles close to the magnet will experience a higher force than the magnetic particles farthest away from the magnet. Magnetic force decreases as distance from the magnet increases, so the particles farthest away might not feel any force if the magnetic strength is not great enough.

Read More
 

Centrifugal filters for enhanced separation of heterogeneous mixtures

Centrifugation is a common technique used for the separation of heterogeneous mixtures. The force of gravity on matter is the core principle of centrifugation. Matter naturally separates based on density, with the most dense particles precipitating out of solution first, and the less dense particles falling out later. Some particles prefer to remain in colloidal solution under normal gravitational force, and will not separate naturally within a reasonable time frame.Centrifugation can be used to rapidly separate those mixtures. The spinning centrifuge creates centripetal forces much greater than gravity, which can force particles to separate. The centrifugal protocol must be optimized for each experiment in order to efficiently separate the mixtures into desired layers. The most basic separation results in a higher density pellet at the bottom of the tube, and a lower density supernatant. Differential centrifugation is a process whereby the pellet and supernatant are separated during multiple centrifugation steps. Density gradient centrifugation utilizes a density gradient matrix within the tube to aid in separation. Another useful tool for centrifugation is a centrifugal filter. The filter helps to separate particles by size as well as density in one swift motion. The centrifugal filter is used to isolate RNA or DNA, to consolidate proteins, to separate molecules by size, or to remove contaminants from a liquid.

Read More
 

Specific versus non-specific capture of DNA

The reversible-binding systems mentioned in the previous post are examples of non-specific capture methods. They capture total DNA and RNA in a sample because they simply rely on the affinity of nucleic acids to the magnetic particle coating or functional moiety. Non-specific capture methods bind all single-strand (ssDNA) or RNA regardless of sequence. A more specific capture system is able to target specific sequences of ssDNA or RNA. This type of specific capture is most applicable to diagnostic systems as an assay for a specific pathogen. Examples include systems to diagnose methicillin resistant staphyloccocus aureaus (MRSA), specific plant viruses, and infection with malaria-causing bacteria. These strategies could be applied to detect viral, bacterial, or fungal pathogens in a variety of clinical samples.

Read More

Leave a comment