After celebrating its IIVD seminars in Asia over the past few years MERCK has decided to organize this year’s event in Europe during the autumn season. This workshop will be held in Paris, on October 18th and 19th 2018.
Recent Posts
The ability to isolate and identify proteins from a biological solution is fundamental to basic research and clinical diagnosis. Proteins are the workhorses of the organism; they send and receive messages, they control the flow of information across the cell membrane, and they enact cascades of action within cells. It is rare that a single protein works alone, so it is imperative to understand how proteins interact with each other if we are to understand the nature of our bodies and to discover and treat disease.
Modern drug discovery utilizes libraries of purified proteins. These proteins are screened by libraries of small molecule drug precursors. This combinatorial screening process greatly speeds up the identification of new drug molecules.
Size exclusion chromatography columns are used to separate molecules by size, molecular weight, and hydrodynamic volume. The technique can be used with proteins, polymers, and other macromolecules. It can also be used for buffer exchange or desalting a sample. The principle behind size exclusion chromatography columns is simple, but the technique only works when the correct resin-bound column is matched to the experimental goal.
Enzymes are used in the food, agricultural, cosmetic, and pharmaceutical industries to control and speed up reactions in order to quickly and accurately obtain a valuable final product. Enzymes are crucial to making cheese, brewing beer, baking bread, extracting fruit juice, tanning leather, and much more. The industrial uses of enzymes are also increasing since they are being used in the production of biofuels and biopolymers. The enzymes can be harvested from microbial sources or can be made synthetically. Yeast and E. coli are commonly engineered to overexpress an enzyme of interest. This type of enzyme engineering is a powerful way to obtain large amounts of enzyme for biocatalysis in order to replace traditional chemical processes.
Proteins are essential components of cells, tissue, and organisms. These macromolecules are made of long strings of amino acids arranged specifically into three dimensional configurations. The side chains of these 22 amino acids create pockets of potential for chemical interactions as the polypeptides fold into their tertiary structures and interact with each other. Proteins initiate and mediate the thousands of biochemical pathways that govern an organism’s function. The careful study of proteins can reveal information about the function of our bodies, the pathways of disease, and the expression of the genetic code. The main challenge to overcome when studying proteins is to choose the most appropriate method of protein extraction.
Nano gold is another name for gold nanoparticles. These nanoparticles are a fraction of the size of human hair and are less than 100 nm in diameter. Nano gold particles are so small that it they are generally found as a colloidal solution, which means that the gold nanoparticles are suspended in a liquid buffer. Therefore, nano gold, or gold nanoparticles are also called colloidal gold. Also, nano gold is generally found in a colloidal solution because gold nanoparticles are created by citrate synthesis. This process involves mixing solutions together to result in the precipitation of gold nanoparticles into solution.
From the clinical laboratory ELISA to the home pregnancy test, the conjugated antibody is integral to the function of many diagnostic assays. We know about the specificity of antigen-antibody interactions and their role in mounting the innate immune response to a pathogen. This antigen recognition specificity has been utilized by clever scientists and engineers to create biosensors capable of detecting the presence of antigens in biological samples. Biosensors come in many shapes and sizes, and have varying levels of complexity, but one fundamental concept is the need to covalently attach antibodies to a substrate.
Protein A vs Protein G both are bacterial cell wall proteins that have primary binding sites for human and mammalian immunoglobulin G (IgG) antibodies. Protein G was first isolated from Streptococcal bacteria strains C and G. Similarly, protein A was originally found on the cell wall of the bacteria Staphylococcus aureus. These proteins have primary binding domains for the Fc region of (IgG) antibodies, but can also recognize the Fab region of certain IgG subclasses. For the bacteria this is useful because binding IgG’s at the Fc region prevents macrophages from recognizing them, which in turn prevents phagocytosis of the invading bacteria by the host immune system.
The China Association for Chemical Laboratory Practice (CACLP) Expo is the biggest and most influential IVD-exhibition in the Asian giant. We attended the 2018 edition, held in the city of Chongqing from March 17th to March 19th. Here are the impressions about the event of some colleagues and our CSO.

