New call-to-action

Blog

Lluis M. Martínez, SEPMAG Chief Scientific Officer

Lluis M. Martínez, SEPMAG Chief Scientific Officer
Founder of SEPMAG, Lluis holds a PhD in Magnetic Materials by the UAB. He has conducted research at German and Spanish academic institutions. Having worked in companies in Ireland, USA and Spain, he has more than 20 years of experience applying magnetic materials and sensors to industrial products and processes. He has filed several international patents on the field and co-authored more than 20 scientific papers, most of them on the subject of magnetic particle movement.

Recent Posts

 

Janus Particles Induce Death in Cancer Cells

Magnetic nanoparticles have proven particularly effective in chemotherapeutics applications. By combining the physical and chemical properties of more than one component material, nanoparticles can be designed that contain multiple functionalities, thereby dramatically increasing therapeutic efficacy. Recently, a research group out of University College Dublin in Ireland developed nanoparticles with distinct outer segments. The researchers coupled the properties of each of the segments to yield particles capable of performing diagnostic and therapeutic operations, inducing targeted cell death through multiple mechanisms.

Read More
 

Surface Attenuation for High Sensitivity Assays

Designing binding surfaces with optimal ligand (e.g. antibody, antigen or protein) functionality is required for ultra sensitive assays. However, classical solid phase chemistry approaches for conjugating or binding ligands to surfaces do not control the density or parking area of the ligand, nor do they provide control over ligand conformation and orientation.

Read More
 

Rapid biofunctionalization of magnetic beads with function-spacer-lipid constructs

KODE™ Technology is based on novel water-dispersible self-assembling molecules, called a function-spacer-lipids or KODE™ constructs (Figure 1) that are able to coat virtually any biological or non-biological surface with almost any biological or non-biological material [1-10]. The primary coating method of live cells, organisms, bacteria and viruses or solid surfaces (glass, metals, plastics, etc.) is achieved by simple contact with a solution containing one or more FSL KODE™ constructs. Upon contact the FSLs spontaneously and harmlessly create a stable and novel surface coating. Essentially the spontaneous self-assembling process is driven by the need of the constructs to “exclude water”. Because the constructs are able to bind to virtually any surface, be it hydrophobic or hydrophilic the mechanisms of action are multiple and complex and include hydrophobic interactions (via lipid tail), hydrophilic interactions (via the head group and spacer), micelle entrapment, encapsulation, bi/multi layer assembly, and other factors such as hydrogen bonding, van der Waals forces, electrostatic and ionic interactions and combinations of all the above on complex surfaces.

Download the guide: Magnetic bead coatings: Today and Tomorrow

Read More
 

Magnetic bead coatings: Today and tomorrow

Bio-functionalized magnetic beads are widely used for capturing specific molecules or cells thanks to their super-paramagnetic properties. They are typically used for two main purposes in the Biotech field. They act as the solid phase for both separation processes such as purification of proteins/molecules and for in vitro diagnostics (IVD) reagents.

Free guide: Magnetic bead coatings: Today and Tomorrow
Read More
 

How are magnetic cell sorting protocols designed?

During the last weeks we have reviewed several aspects of biomagnetic cell sorting, a process which facilitates the quick and targeted removal of specific cells from a heterogeneous solution. Cell sorting is essential for a number of purposes, from technological to investigative and biomedical. By harnessing the properties of magnetic beads, biomagnetic separation (BMS) allows cells to be isolated for additional downstream applications, without adversely affecting their form or function.

Free PDF guide:  "Basic guide to Magnetic Bead Cell Separation"
Read More
 

Applying a Magnetic Field for Cell Sorting Processes

Use of magnetic beads provides an efficient and innovative method of harnessing magnetic separation processes to non-magnetic, cellular targets of biological origin. When beads are attached, the ensemble of the cells and beads becomes a magnetizable object.

Free PDF guide:  "Basic guide to Magnetic Bead Cell Separation"

Read More
 

How does magnetic activated cell sorting work?

Coated magnetic beads are capable of interacting with and binding to a corresponding target within a sample. Binding specific biomarkers to the surface functional group present on the bead (e.g., streptavidin) ensures that the interaction is limited to specific cells. Recovery of material for further studies is greatly simplified when beads are concentrated from suspension, by means of an external magnet.

Free PDF guide:  "Basic guide to Magnetic Bead Cell Separation"
Read More
 

Hydroxyapatite-Coated Magnetic Nanoparticles for the Removal of Nitrogen Species

Nitrite and nitrate pollutants in soil and water pose significant health risks. The presence of these pollutants in drinking water can have serious consequences, including cancer, methemoglobinemia, and blue baby syndrome in newborns. Removal of these contaminants is essential to the maintenance of environmental and human health. Developing efficient strategies for removal, however, has proved challenging.

Read More
 

Article by Sepmag Founder Underlines the Importance of Understanding Biomagnetic Separation Parameters

An article by Sepmag founder and CSO, Dr. Lluis M. Martinez, appears online this week in Genetic Engineering & Biotechnology News. The article addresses issues thatariseduring a biomagnetic separation application and offers critical suggestions for approaching a process. Of particular importance is an understanding of the inherent parameters of a separation.

Read More
 

Magnetic Nanoparticles Utilized to Stimulate Bone Growth

Mechanical stimulation is an important aspect of bone metabolism and regeneration. A number of studies have highlighted the importance of mechanotransduction pathways in osteogenic mesenchymal stem cell (MSC) differentiation.Providing a mechanical stimulus can have a significant role in the outcome of regenerative treatments.

Applying a mechanical load to damaged bone, however, is not always feasible. A recent study published in “Stem Cells Translational Medicine”describes a novel procedure forsuch cases. The protocol makes use of superparamagnetic nanoparticles to remotely induce mechanotransduction.

Using magnetic nanoparticles to activate mechanotransduction pathways

By targeting magnetic nanoparticles to cell-surface mechanosensors, researchers sought to deliver a stimulus to directly activate mechanotransduction pathways. Magnetic nanoparticles were labeled with either Arg-Gly-Asp (RGD) tripeptide or TREK1-Ab, targeting particles to mechanically gated receptors, i.e., integrin RGD-binding domains and TREK1 stretch-activated ion channels, respectively.

An oscillating magnetic field was applied, yielding a force of 4 pN per nanoparticle. Bound nanoparticles transferred the force generated by the external magnetic field to the stem cells via the receptors or ion channels to which they were attached, thus inducing mechanotransduction pathways. The result was propagation of the stimulus without the associated application of mechanical stress.

Stimulating bone growth

Researchers demonstratedthe principles oftheir technique in vitro utilizing chicken fetal femurs and collagen hydrogels. MSCs labeled with magnetic nanoparticles were delivered to the femur by microinjection. MSCs receiving mechanical stimuli via bound nanoparticles showed increased bone formation in comparison withunlabeled MSCs. Similarly, collagen hydrogels seeded with nanoparticle-labeled cells displayed increases in both volume and density, and significantly more mineralization than hydrogels seeded with unlabeled cells.

Combining mechanotransduction with the sustained release of bone morphogenetic protein 2 (BMP2) delivered by bioresorbable polymer microparticles resulted in an even greater increase in bone formation than that observed with either nanoparticle-mediated mechanotransduction or BMP2 alone. The microparticles, measuring 10–40 μm in diameter, were engineered to release BMP2 in controlled bursts over a number of days.The resulting synergistic effect underlines the potential for the procedure when combined with existing pharmacological therapies and other strategies for bone regeneration.

Researchers point out the range of possible MSC targets, both intra and extracellular, and thepotential for controlling the applied stimulus by altering the magnetic field strength or the number and size of the magnetic particles. Future avenues of study will include investigating the result of stimulating additional mechanoreceptors, either alone or in combination with the sustained release of growth factors.

A full report of the study can be accessed online in the Stem Cells Translational Medicine site.

Related news:

FREE Download: Basic guide to magnetic bead cell separation

Read More

Leave a comment