New call-to-action

Blog

Lluis M. Martínez, SEPMAG Chief Scientific Officer

Lluis M. Martínez, SEPMAG Chief Scientific Officer
Founder of SEPMAG, Lluis holds a PhD in Magnetic Materials by the UAB. He has conducted research at German and Spanish academic institutions. Having worked in companies in Ireland, USA and Spain, he has more than 20 years of experience applying magnetic materials and sensors to industrial products and processes. He has filed several international patents on the field and co-authored more than 20 scientific papers, most of them on the subject of magnetic particle movement.

Recent Posts

 

How advanced biomagnetic separation systems solve most of your cell sorting problems

Sorting cells from a heterogeneous population enables the study of the different isolated types, but also allows for the introduction of enriched cell populations to a patient. The use of highly selective separation procedures is also critical to improve cell-based treatments on stem cell therapy, tissue engineering and regenerative medicine.

Free PDF guide:  "Magnetic Separation Racks for Cell Sorting"
Read More
 

Latest issue of “Nature” reveals first drafts of the Human Proteome

Two draft maps of the human proteome have been published in the latest issue of Nature. The drafts were produced by two separate international research teams working independently of one another. Using mass-spectrometry to analyze tissue, body fluids, and cells, the teams have catalogued the proteins that are found in a non-diseased state and identified novel proteins expressed from what was previously thought to be non-coding or junk DNA.

Read More
 

3 problems when using classical magnetic separation rack in cell sorting

Biomagnetic cell separation is an alternative to centrifugation, columns, filtration and precipitation. It eliminates undue cell-stress and reduces the risk of negative impact on cell function and phenotype.

Free PDF guide:  "Magnetic Separation Racks for Cell Sorting"
Read More
 

International Forum Nanobeads Technology Advances for IVD (1/2)

A few days ago I was invited by Merck Millipore to contribute to the Forum they organized in Shanghai. Besides being one of the speakers –more details below-, SEPMAG has also been involved as sponsor. We believed the direct contact with IVD-magnetic beads users in China, as well as with the technical worldwide contributors, is the only way to still push forward this technology.

Read More
 

Recombinant protein purification from insect-derived crude extracts using magnetic beads

The business value of potentially large production capacities coupled to lower capital expenditures (CapEx) requirements and manufacturing costs may reduce the gap between production volumes and patient needs for potentially life-saving drugs. This is the reason because pharmaceutical companies are continuously seeking for new technologies. An economically efficient alternative to bioreactor-based technologies is the use of living biofactories such as transgenic animals, plants or insects.

Free PDF Download:   "The Advanced Guide to Biomagnetic Protein Purification" 
Read More
 

Nanoparticles can target the delivery of nerve blocking agents

Devising a safe and efficient protocol for using magnetic nanoparticles to target drug delivery is an ongoing challenge whose study has yielded promising results. While the majority of these studies have been focused on delivering cytotoxic drugs to cancer cells, there is a range of possible applications for which targeted delivery could prove invaluable.

Read More
 

Magnetic bead-enabled one-step lysis and recombinant protein purification

A need for rapid, reproducible, small-scale purification

For many recombinant protein applications, such as expression clone screening and for optimizing expression conditions, there is a crucial need for a rapid, reproducible, small-scale purification process. Traditionally, protein purification from E. coli consists of four distinct phases: harvest, bacterial cell lysis, lysate clarification and protein purification. You will find the whole process explained step by step in our protein purification handbook.

Free PDF Download:   "The Advanced Guide to Biomagnetic Protein Purification" 
Read More
 

Magnetic Nanoparticles Trigger Tumor Cells to Self-Destruct

The necessity of finding a safer and more efficient way to treat cancer has led investigators to naturally turn their attention toward nanoparticles. Recently, a group of researchers in Sweden has come up with a novel system of utilizing magnetic particles to trigger apoptosis, thus resulting in the self-destruction of tumor cells. The findings, published in the journal ACS Nano, signify a promising approach to cancer treatment, with implications extending beyond oncology and encompassing a range of clinical applications.

Read More

Leave a comment