New call-to-action

Blog

Lluis M. Martínez, SEPMAG Chief Scientific Officer

Lluis M. Martínez, SEPMAG Chief Scientific Officer
Founder of SEPMAG, Lluis holds a PhD in Magnetic Materials by the UAB. He has conducted research at German and Spanish academic institutions. Having worked in companies in Ireland, USA and Spain, he has more than 20 years of experience applying magnetic materials and sensors to industrial products and processes. He has filed several international patents on the field and co-authored more than 20 scientific papers, most of them on the subject of magnetic particle movement.

Recent Posts

 

Is There any Advantage of Using Beads with Plain Coatings?

Attaching a protein to a bead can be a detailed process that requires forethought and careful planning. Generally, a molecule is attached to a particle through a surface group available on the coating of that particle, for example in the case of streptavidin beads. In cases where the attachment is covalent, it is essential to choose a binding site on the molecule that will allow for proper orientation, maximally presenting the desired site to the sample while still retaining a strong attachment between the molecule and the bead.

Read More
 

Important factors in sample preparation for protein purification

During the sample preparation for the purification of recombinant proteins, there are several considerations that will influence its development. All preparation steps, which are thoroughly explained in our protein purification handbook, are important and we have to pay attention to them.

 
Read More
 

Magnetic Beads: What is the Right Coupling for a Specific Biomarker?

Preparing magnetic beads for a particular assay, such as streptavidin beads, requires the beads to be functionalized. The beads need to be attached to the biological material that will serve as a capture molecule in the application. The particular type of attachment by which a molecule is linked to the bead will depend primarily on two things: the molecule being bound and the aim of the process.

Read More
 

Finding the Know-How Necessary for In-House Expertise

Should I use streptavidin beads or gold particles when developing my IVD kits? In order to ensure the success of a protocol, it is essential to have a clear and unbiased knowledge base and a reliable source of reference material. When trying to decide the best platform or application to use for a process, it is critical to ensure that the information on which the decision will be based is generic and factual, and not propagated as promotional data.

Read More
 

The 4 best tags to purify recombinant proteins

Chromatography is one of the most common methods for the purification of recombinant proteins, and more specifically affinity chromatography is the one that is mostly used due to its high specificity, which allows us to obtain great purity in one single step. When using this technique, a tag is added to the protein of interest, a small structure that is not included in the original protein and that allows us to easily capture it. As we explain in our protein purification handbook, tags are generally short sequences of 3-4 amino acids (up to a maximum of 15) and are intended to minimize as much as possible the properties of the protein.

Read More
 

Moving from Latex Particles to Magnetic Latex Particles

The main reason for changing from latex to magnetic latex particles is the need for a change from an homogeneous to an heterogeneous immunoassay. The latter allows washing steps, which potentially help to improve analytical sensitivity and to reduce interference from sample components. The main consideration in shifting from a process that utilizes latex beads to one that uses magnetic latex beads will be the physical separation process itself. Applications that utilize latex beads traditionally make use of a centrifuge or, alternatively, tangential filtration. In contrast, processes that use magnetic latex beads are carried out in a biomagnetic separator. As such, it is necessary to acquire an adequate separator for the process. Ideally, this would be a homogeneous separator.

Free PDF guide:  "The Advanced Guide for the use of Magnetic Bead in ChemiLuminiscent  ImmunoAssays (CLIA)" 
Read More
 

Recombinant protein purification: The 6 most effective methods

Recombinant proteins are produced in the host cells along with a great variety of molecules that it contains naturally. However, for most of their applications (such as for example in therapeutics), a recombinant protein should be purified and isolated from the rest of cell molecules. As we explain in our protein purification handbook, this is obtained by the recombinant protein purification processes.

Read More
 

Moving from Gold Particles to Magnetic Beads in IVD Assays

There are a number of reasons why a lab might want to switch from colloidal gold particles to magnetic beads (for example, streptavidin beads) in an in vitro diagnostic assay, such as swapping from optical to magnetic detection in a lateral flow format or charging the format from lateral flor to a lab automated platform. Making the shift from utilizing one nanoparticle to another, however, is not a straightforward process. There are several areas where problems may arise. There is a considerable difference, for instance, in the way gold particles and magnetic beads bind a molecule. Moreover, the methodology for applications utilizing gold particles is significantly different from that of processes that make use of magnetic beads.

Read More
 

How to design the best vector to produce recombinant proteins

The host in which a recombinant protein is produced doesn’t naturally include the gene of this protein in its genome. Therefore, this gene needs to be introduced in a process called molecular cloning. Successful cloning of a gene requires several elements, which are discussed in our protein purification handbook.

Read More
 

A great variety of magnetic particles for multiple applications

In vitro diagnostic (IVD) applications frequently make use of nanoparticles as solid-phase carriers for a given capture molecule. In order to be utilized in this manner, nanoparticles must first be coated, thereby attaching the capture molecules to the particles. There are notable differences in the way that different types of particles are coated, and this will be a significant factor in the decision to utilize one particle over another in a given assay, for example, streptavidin beads or latex particles.

Read More

Leave a comment