New call-to-action

Blog

Lluis M. Martínez, SEPMAG Chief Scientific Officer

Lluis M. Martínez, SEPMAG Chief Scientific Officer
Founder of SEPMAG, Lluis holds a PhD in Magnetic Materials by the UAB. He has conducted research at German and Spanish academic institutions. Having worked in companies in Ireland, USA and Spain, he has more than 20 years of experience applying magnetic materials and sensors to industrial products and processes. He has filed several international patents on the field and co-authored more than 20 scientific papers, most of them on the subject of magnetic particle movement.

Recent Posts

 

Introducing Homogenous Biomagnetic Separation

Traditional biomagnetic separation techniques have several drawbacks that affect both the quality and the quantity of the final product.

Read More
 

4 steps to validate the homogeneity of your biomagnetic separation process

Biomagnetic separation needs validation in order to ensure reproducibility. The skills necessary to identify the key parameters affecting separation performance, measure those parameters, and enact the appropriate controls are specific and require an excellent background in physics.

Read More
 

How to monitor your biomagnetic separation process

Magnetic bead separation is being used in more and more applications (e.g. immunoassays, collection of genetic material, protein purification). Most of these applications are industrialized and therefore require quality control protocols, validation audits and standard operating procedures. Because of the economic implications, production mistakes are not acceptable, so products must demonstrate reproducibility in order to be viable.

Read More
 

Why do magnetic beads move faster than expected?

The success of magnetic bead separation technology comes from its simplicity. Magnetic beads capture biomolecules and then they are extracted from the suspension. No filters are needed, there are no disposables, and there are no moving parts.

Read More
 

Do you have full control of all your steps in your production process?

The cornerstone of any good production process is the ability to have robustness and reproducibility, especially in the biotech industry and in the magnetic bead separation industry.

Read More
 

The 2 ways you can demagnetize your biomagnetic separation device

Since reproducibility over time is a highly desired trait when using biomagnetic separation, especially when used in the life sciences, it is important to consider all possible disruptions of consistency. Biomagnetic separation devices use permanent magnets which maintain their properties over long periods of time.

Read More
 

Ensure 100% consistency from lot to lot

Biotech companies such as InVitro Diagnostic aim for 100% reproducibility in every single batch they produce and in every kit test in each batch. In fact, customers expect that they will receive a product that will perform exactly the same as the last time they purchased it. It does not matter what batch the product is or when it was produced.

Read More
 

The 4 wrong ways to improve magnetic separation time (and 1 way to do it correctly)

It is vitally important for life sciences products to be consistent from lot to lot, so two batches of the same product produced in the same way should have little variability. In order to achieve a high level of quality control, one must define a strict standard operating procedure (SOP). In the case of a permanent magnet magnetic bead separation device, conditions are usually very stable and so the main parameter to control is the time the vessel is exposed to the magnetic field during production.

Read More
 

How to avoid resuspension problems during biomagnetic separation processes

There are no easy ways to bypass steps or simplify the production process of magnetic bead separation. Steps in the production process that seem easy or easily bypassed, turn the production into a nightmare if one attempts to take short cuts. One of these seemingly easy steps is the resuspension step.

Read More
 

The two critical points necessary to achieve homogeneous biomagnetic separation conditions

During the development of a magnetic bead separation process, scientists put great effort into reproducing the size of the beads, the magnetic charge on the beads, buffer composition, pH and temperature. What is often overlooked, however, is the importance of homogeneous biomagnetic separation conditions.

This post is about magnetic bead separation and how to validate this process. If you are interested in this topic, and are willing to learn more about it, download our Free Guide The Starting Guide to Validate Biomagnetic Separation Processes:

Read More

Leave a comment