Customizable Nanoframeworks are one of the most exciting innovations in the world of nanochemistry. There are two main classifications of nanoframeworks. The first is the Metal-Organic framework (MOF). A MOG is a classification of a compound that consists of a metal linked to an organic ligand to form a coordinated structure in 1, 2 or 3 dimensions.
The second is a Covalent-Organic framework (COF), which is a crystalline porous organic framework with two or three dimensional properties. A COF is usually, but not always, limited to light elements (H, B, C, N and O) . Both possess a π-conjugated system and have a wide porous volume that can be tuned with the selection of a linker. This linker also has further effects on the electronic structure of the material. Thousands upon thousands of different, unique frameworks have been identified, leading to a variety of sizes that range from the nm to mm range. However, in all cases, the porosity of the framework benefits from a high surface area to volume ratio, leading to many different applications using a delivery mechanism that benefits from rapid diffusion.