New call-to-action



IVD assays for point of care malaria diagnosis

An in vitro diagnostic product (IVD) is any reagent, device, system, or part of a system used outside of the body to diagnose a disease or infection. The IVD can be used to detect DNA/RNA, microorganisms, or protein. This can be in a laboratory setting or in a “point of care setting.” Point of care (POC) is beneficial because it removes the need to send a sample to a laboratory for testing. Therefore, the time between sample collection and diagnosis is significantly reduced. Point of care IVD is especially useful in resource-poor settings where laboratories are located far away and there is a lack of good communication or transportation infrastructure.      

Read More

Gold Nanoparticle Synthesis strategies

Gold has always held a special allure for humans throughout history: wars were fought over it, alchemists strived to turn other metals into it, graves were looted for it, and love was sworn by it. Gold is so entwined in our lives that many people don’t even realize that it is fundamental to many state-of-the-art biotechnology. One of the most useful modern properties of gold is the creation of a surface plasmon resonance condition upon exposure to incident light of a resonance frequency. Gold used in this way is applied as a thin layer on a surface plasmon resonance (SPR) chip or is used as nanoparticles in Surface Enhanced Raman Scattering (SERS). These aqueous solutions of gold nanoparticles (5-50 nm in diameter) are the least recognizable form of gold because these colloidal solutions actually appear reddish in color rather than the characteristic yellow color of larger solid gold. It turns out that the work of the alchemists was not wasted. The discovery of aqua regia (noble or royal water) by an alchemist in the 8th century AD is critical to gold nanoparticle synthesis. This powerful mixture of nitric acid and hydrochloric acid is capable of dissolving solid gold to make chloroauric acid, which is the starting point for gold nanoparticle synthesis.

Read More

Magnetic cell separation processes in 3 steps

Cell separation is widely used in research and clinical therapy. For research purposes, sorting cells from a heterogeneous population enables the study of the different isolated types. From a therapeutic perspective, cell separation allows for the therapeutic infusion of enriched cell populations into a patient. Moreover, the latest advances in stem cell therapy, tissue engineering and regenerative medicine show the potential of cells derived from different tissues. The use of highly selective separation processes is critical to improve the quality of these cell-based treatments.

Read More

DC protein assay

A dc protein assay is used to quantify the amount of total protein in a sample. There are two main ways to do this, and both involve a color change as an indicator of protein presence, which means they are colorimetric assays:

Read More

Sandwich ELISA

The sandwich ELISA is a type of Enzyme-linked immunosorbent Assay that uses two antibodies: a capture antibody and a detection antibody. The purpose of any ELISA is to detect the presence of a target antigen in a sample. In a sandwich ELISA the target antigen is bound between a capture antibody and a detection antibody. The capture antibody is immobilized on a surface, while the detection antibody (conjugated to an enzyme or fluorophore label) is applied as a last step before quantitation.

Read More

ELISA reader

ELISA stands for Enzyme Linked Immunosorbent Assay. The immunoassay utilizes the specific lock-and-key recognition between antibodies and antigens. This recognition occurs naturally in the adaptive immune system; antibodies are created by the immune system when an antigen such as a virus or bacteria invades the body. The immune system recognizes the foreign invader and creates antibodies that specifically recognize surface proteins on the virus or bacteria. The antibodies are either attached to the surface of an immune cell or move freely through the body to tag the invader and begin a cascade of destruction and elimination. The most useful part of this process from a biotechnology and engineering perspective is the specificity of the antibody-antigen recognition.

Read More

A general filtration process

Filtration is a simple technique used to separate solid particles from suspension in a liquid solution. There are many filtration methods available, but all are based on the same general principle: a heterogenous mixture is poured over a filter membrane. The filter membrane has pores of a particular size. Particles larger than the pores will be unable to pass through the membrane, while particles smaller than the pores will pass through unhindered. Additionally, all liquids will pass through. The final result of a filtration process is a collection of residue on the filtration membrane. This residue is therefore effectively separated from the rest of the mixture that passed through the membrane.

Read More

Fluorescent microspheres

Fluorescent microspheres are small polymers embedded with fluorescent dye. They are a useful tool for medical imaging because they are non-toxic and non-biologically reactive when used as directed. Fluorescent microspheres are also useful in research laboratories as markers for fluorescent microscopy and as standards for flow cytometry fluorescent cell sorting. The main benefit of using a polymer microsphere embedded with fluorescent dye rather than using the dye alone, is two-fold: the matrix protects the dye from photobleaching, and the microsphere concentrates the dye leading to a more robust fluorescent signal.

Read More


The Enzyme Linked ImmunoSorbant Assay (ELISA) is the gold standard immunoassay for clinical diagnosis of disease. The basis of any immunoassay is the specific molecular recognition between antibody and antigen. This is something that the immune system does naturally. The production of monoclonal antibodies in a laboratory has become commonplace and standardized, which makes it possible to use monoclonal antibodies in immunoassays such as an IgG ELISA. The antibodies are easy to purchase from commercial vendors, and they come with quality control reports ensuring that they will recognize the target antigen.

Read More

Protein assay

Proteins are one of the four macromolecule building blocks of life. The other three are carbohydrates, lipids, and nucleic acids. Proteins are long strings of amino acids that fold together into hierarchal structures in order to perform specialized functions within the cells and tissues of all living organisms. These higher structures are imperative to the proper function of the protein within it biochemical pathway. The tertiary structure creates the chemical and morphological landscape that imparts the biorecognition abilities to ligand, receptors, antibodies, and all of the other workhorse proteins in the organism. The hydrophobicity or electrosatic nature of the binding pockets are responsible for the specific affinities between proteins. It is no wonder that the ability to analyze proteins with a protein assay is fundamental to biological research and clinical diagnosis.


Purpose of Protein Assays

The purpose of the protein assay is to determine the amount or concentration of a specific protein or an array of different proteins a sample. This can be a primary step before further manipulation in a research and development process, an initial capture of protein before structural analysis, or it can be a final detection step in a clinical laboratory as part of a disease diagnosis.

Read More

Leave a comment