Nueva llamada a la acción

Blog

 

Monitoring with Homogenous Biomagnetic Separation to detect QC Issues

In non-homogenous magnetic separators, monitoring the entire separation process is difficult to impossible. As a result, errors in the magnetic separation process, such as using the wrong magnetic beads or using buffers with the wrong properties are not detected until the final QC testing stage.

Download our FREE guide about Biomagnetic Separation for Production HERE
Read More
 

Issues with lot-to-lot inconsistencies in magnetic bead processing

When magnetic bead reagents are produced in quantity, often you cannot know if you have the correct properties of the beads until the final quality control step. But if these properties are wrong, finding out the properties at the end of the magnetic separation process for production does not allow you to salvage the lot. Knowing magnetic bead properties, such as size, magnetic charge and surface charge, is critical in order to have excellent reproducibility in the final product (e.g. IVD kits).

Read More
 

3 Key Parameters for Defining a Production Process in Biomagnetic Separation

If scientists and technicians link their production results solely to the separation time on one specific piece of classic biomagnetic separation equipment, they will not be able to translate that success. This is applied to both different batch sizes or even the same batch size on a different piece of equipment, unless they optimize the separation time for the new conditions.

Download our FREE guide about Biomagnetic Separation for Production HERE
Read More
 

Problems from linking your biomagnetic separation process to a specific type of equipment

When a lab has finally optimized their production process, they often link their process to a very specific piece of equipment and, by extension, have locked themselves into a constant volume. Often a lab develops its magnetic separation process for production with a specific magnetic separation device – this is normal. Usually the only parameter that needs to be adjusted during production is the separation time.

Download our FREE guide about Biomagnetic Separation for Production HERE
Read More
 

How to save space in the clean room during a magnetic separation process

Classic magnetic separation equipment requires a large amount of space in order to comply with health and safety regulations. While the magnetic separation process has numerous advantages, the magnetic fields surrounding the devices may be so large that they fall within the ‘danger’ and/or ‘caution’ areas.

Read More
 

Objectively Quantifying the Separation Time of your Biomagnetic Separation Process

The separation time in standard magnetic separation devices is usually determined by analyzing aliquots of solution taken at different times. The problem is that each aliquot gives the technician information about one spatial point in time. Therefore, the design of validation experiments becomes a very complex endeavor.

Download our FREE guide about Biomagnetic Separation for Production HERE
Read More
 

Safety Risks using Magnetic Systems during Magnetic Separation Processes

When using biomagnetic separation systems, customers are always curious about how to comply with the various health and safety regulations that are in effect. When customers use small systems for a small scale magnetic separation process, there is very little risk from the magnets. The only risk would be if the technician has a pacemaker and in that case, they would be extremely careful around even the smallest system. There is also a small risk of pinching one’s fingers between two magnets.

Read More
 

Keep Magnetic Bead and Biomolecule Losses near Zero during Production

When scaling up a process using a traditional magnetic separation rack, the percentage of bead and biomolecule losses significantly increases with an increase in volume. One way of dealing with this problem is by applying a higher force at longer distances. But for this to work, you must apply this greater force without increasing the forces in the retention area during the magnetic separation process, in order to avoid irreversible aggregation.

Download our FREE guide about Biomagnetic Separation for Production HERE
Read More
 

How to Guarantee Lot-to-Lot Consistency in Biomagnetic Separation

If one wants to scale up production from small lab lots to full-scale large lots, a non-homogenous magnetic separation process will result in lot-to-lot inconsistencies. Homogenous biomagnetic separation conditions, however, guarantee consistent results regardless of production scale.

Read More
 

Centrifugation and Filtering with Biomagnetic Separation

Biomagnetic separation techniques are faster, cheaper and easier to use than non-magnetic techniques. In addition, when a magnetic separation process is performed under homogenous conditions, these techniques are also scalable and easily validated.

Read More

Leave a comment