Blog

 

Classes of Antibodies

The structure of the most commonly known antibody class (IgG) was a mystery until 1959, when it was elucidated by Edelman and Porter . The duo approached the question from two very different directions, but they were both awarded the 1972 Nobel Prize in Physiology or Medicine for their groundbreaking work. Gerald Edelman said that he was, “fascinated by the specificity of antigen recognition by antibodies,” and hoped that, “by doing the primary structure of antibody molecules, the basis of their specificity would be revealed.” Indeed, it was.

Read More
 

Conclusions on the magnetic bead coatings post series

The goal of the series of posts from the last weeks was to review the state-of-the-art of magnetic beads coatings. The contributors have reviewed the classical surfaces, but also the new approaches to improve and simplify the process. Last but not least, the physical aspects of the magnetic beads and the separation process were discussed, as they have a critical impact on the success of the coating process.

Read More
 

The 2 critical points of using biomagnetic separation for washing coated magnetic beads

Coating your magnetic beads with biomarkers is the most critical step during the development and production of Chemiluminescence Immunoassays (CLIA). Attaching the antibody (or any other protein) to the bead’s surface requires incubating both materials together, using the right buffer and temperature, gently mix and homogenize the suspension. Once the process is completed, it is necessary to separate the solid phase (the magnetic beads with the attached biomolecule) from the rest of the suspension and, once washed, re-suspend the reagent in a new buffer for avoid biomarker reaction and beads aggregation.

Read More
 

Importance of physical properties of magnetic dispersions during protein coating

During protein (or other kind of molecules) coating onto magnetic particles, there are two main parameters that govern the success of the process: the physical and chemical properties of the protein itself and the magnetic particle dispersions. For this reason, the correct selection of these components is the key for an excellent coating. In this article the importance of physical properties of magnetic dispersions is discussed.

Read More
 

Using Tosyl activated magnetic beads in chemiluminescent immunoassays

Magnetic beads are available with a large variety of surface coatings. One of the coatings are the Tosyl activated beads. This post is describing the handling and advantages of the use of Tosyl activated magnetic beads in chemiluminescent immunoassays.

Read More
 

The 4 today’s surfaces for magnetic beads coating

The use of magnetic beads in IVD is not new. Recent developments –as the described in the next chapters- promise easier and better coating procedures where the orientation and the availability of the captured molecule can be controlled. However, most of the current applications are still using the classical surfaces.

Read More
 

Surface Attenuation for High Sensitivity Assays

Designing binding surfaces with optimal ligand (e.g. antibody, antigen or protein) functionality is required for ultra sensitive assays. However, classical solid phase chemistry approaches for conjugating or binding ligands to surfaces do not control the density or parking area of the ligand, nor do they provide control over ligand conformation and orientation.

Read More
 

Rapid biofunctionalization of magnetic beads with function-spacer-lipid constructs

KODE™ Technology is based on novel water-dispersible self-assembling molecules, called a function-spacer-lipids or KODE™ constructs (Figure 1) that are able to coat virtually any biological or non-biological surface with almost any biological or non-biological material [1-10]. The primary coating method of live cells, organisms, bacteria and viruses or solid surfaces (glass, metals, plastics, etc.) is achieved by simple contact with a solution containing one or more FSL KODE™ constructs. Upon contact the FSLs spontaneously and harmlessly create a stable and novel surface coating. Essentially the spontaneous self-assembling process is driven by the need of the constructs to “exclude water”. Because the constructs are able to bind to virtually any surface, be it hydrophobic or hydrophilic the mechanisms of action are multiple and complex and include hydrophobic interactions (via lipid tail), hydrophilic interactions (via the head group and spacer), micelle entrapment, encapsulation, bi/multi layer assembly, and other factors such as hydrogen bonding, van der Waals forces, electrostatic and ionic interactions and combinations of all the above on complex surfaces.

Read More
 

Magnetic bead coatings: Today and tomorrow

Bio-functionalized magnetic beads are widely used for capturing specific molecules or cells thanks to their super-paramagnetic properties. They are typically used for two main purposes in the Biotech field. They act as the solid phase for both separation processes such as purification of proteins/molecules and for in vitro diagnostics (IVD) reagents.

Read More

Leave a comment