Nueva llamada a la acción



Nucleic Acid Labeling

Nucleic acids refer to biomolecules composed of nucleotides. A nucleotide is the name of a nucleic acid monomer which consists of a 5-carbon sugar base bound to a nitrogenous base and a phosphate group. The type of nucleotide is based on the type of nitrogenous base that is bound. For deoxyribonucleic acid (DNA) the four predominantly found bases are guanine, adenine, cytosine, and thymine. For ribonucleic acids (RNA) the four main bases are guanine, cytosine, thymine and uracil. Both DNA and RNA are part of the central dogma of molecular biology and are studied extensively.  Nucleic acids are also used for research and therapeutic purposes. In order to study and use nucleic acids, it is important to have a system of nucleic acid labeling. Nucleic acid labeling can also be used to track nucleic acids.

Read More

Cell separation based on cell density

The ability to isolate cells is important in both clinical and research settings. The goal of cell separation is to isolate one population of cells that are of interest. There are several reasons for performing cell separation, some examples are interest in studying a cell type or using it for therapy such as T-cell therapy. Some researchers are interested in cell separation to be used for creating hybridoma cell lines or for testing drugs in vitro and seeing the effect of the drugs on cells. There are many available techniques for cell separation. These techniques differ in specificity of cell selection, cost of equipment, time to complete, technology needed, and skill required. Cell separation based on cell density is rapid and inexpensive but is unspecific. Still, it is a fundamental technique that is commonly used in a variety of settings for general cell separation.

Read More

Magnetic particles for intracellular protein delivery

The capability of 1 μm and 2.8 μm magnetic particles to intracellularly deliver cargo proteins

In a recently published paper, researchers of the CIBER-BBN and the University Autonoma de Barcelona demonstrated that magnetic microparticles of 1 and 2.8 μm of diameter, in combination with an appropriate magnetic force, could greatly decrease the time needed to interact with and enter target cells, a clear advantage over other types of drug delivery systems.

Read More

Industrial uses of enzymes

Enzymes: an overview

Enzymes are proteins with the ability to catalyze chemical reactions. We have several articles you can read to learn more about proteins, their uses, and isolating them for research and clinical purposes. Check out our protein isolation article if you are thinking about how to best purify your protein of interest or read our protein assay article to learn more about working with proteins. Enzymes are particularly interesting and useful due to their catalytic activity. The molecule that goes into the enzyme for manipulation is called the substrate. You will often see this interaction called the “lock and key” interaction as the substrate has to fit just right into the pocket of the enzyme for it to work properly (enzymes are highly specific!), the way a key is very specific to the lock it goes into.

Read More

Direct and Indirect Elisa protocol

General overview of ELISA

Read More

Basic Guide for optimizing Chemiluminescent immunoassay (CLIA) performance and scaling-up

There are a few more considerations for optimizing the CLIA assay that in this chapter will be discussed. The following considerations are related to the performance of your assay.

Read More

Isolation Kit

An isolation kit helps you isolate a material of interest. When we talk about an isolation kit, we are likely talking about a kit that helps you isolate nucleic acid (RNA or DNA) or protein. These kits often contain all the buffers and hardware you need for your isolation. Let’s do a review of the types of isolation kits and how they work, then we’ll give you a general protocol to understand how the process works!

Read More

Chemiluminescent immunoassay (CLIA) Tracer Optimization

The tracer, the antigen or antibody labelled with a chemiluminescent tag for CLIA, is the next vital optimization step of a chemiluminescent immunoassay. As mentioned earlier, chemiluminescent labels generate light from a chemical reaction. Widely used CLIA labels  are based on luminol derivatives or acridinium esters.

Read More


Introduction to dNTP’s

dNTP stands for deoxynulceoside triphosphate. dNTP’s are what make up one of the four macromolecules of life, nucleic acids. A nucleoside is a molecule that consists of a ribose (sugar) bound to a nitrogenous base. On dNTP’s the ribose is actually a deoxyribose because it lacks an oxygen atom on the second carbon position. There are four dominant types of nitrogenous bases that define the type of dNTP it is, they are A,T,C,G. The triphosphate is the three phosphate groups that bind the ribose as well. Our DNA is made up of these dNTPS, A binding favorably to T and C binding favorably to G. In addition to their role in the genetics of nature, dNTP’s are also used as a tool for polymerase chain reactions (PCR). Let’s discuss how PCR works and how dTNP’s are used for it.

Read More

Leave a comment