New call-to-action

Blog

 

RNA magnetic purification goes large-scale

There has been a lot of discussion surrounding RNA purification for the purposes for testing people for the presence of  viruses from liquid biopsies. Using magnetic beads for the purification, many kits for individual sample preparations are required. At this time there is also potential for use of magnetic beads for large-scale purification of RNA in research towards the development of vaccines and tests. 

Read More
 

Magnetic beads antibody conjugation

Magnetic beads are used for biomagnetic separation procedures to enrich populations of a target cell, protein, or nucleic acid. Since the affinity between antibody and antigen is strong and specific, antibodies are often conjugated to the surface of magnetic beads in order to bind target cell or protein for enrichment. The magnetic beads are made of polymer (typically polystyrene) and iron oxide particles (usually magnetite (Fe3O4)), and are commercially available in a variety of sizes and surface chemistries. The size of the magnetic bead is important; larger micrometer-sized beads have narrower size distributions and behave more predictably in a magnetic field gradient than smaller nanometer-sized beads. Additionally, the microbeads are better at forming cooperative chains during the magnetic separation process, which improves the efficiency of the separation. When designing or troubleshooting a biomagnetic separation process it is important to evaluate the type of separation rack used and the size of the magnetic beads in addition to the surface chemistry and conjugation procedure. Sometimes the conjugation method is blamed for poor target recovery, but often the problem is due to a poorly designed separation rack

Read More
 

Affinity Chromatography and column purification of proteins and nucleic acids

Column chromatography is a method used in chemistry to isolate a single compound from a mixture. The basic principle of column chromatography is the adsorption of target to the column by designing a column with specific affinity to the target. The target compound adsorbs to the column resin while the remaining mixture easily flow through the column and out the other end. A similar method is used to purify protein and nucleic acids, and it is generally referred to as affinity chromatography. Affinity chromatography requires a solid support (typically a magnetic bead or a resin column) on which to covalently attach a capture molecule which has affinity to the target protein or nucleic acid

Read More
 

Gst tag sequence for protein isolation

Glutothione S-transferase is a 26 kDa protein that is used as an affinity tag for protein isolation in pull-down assays. The GST tag has specific affinity for the protein glutathione. This means that glutathione can be attached to columns or magnetic beads and used to isolate any protein that has been modified with the gst tag sequence. The modification of proteins with the gst tag sequence is performed in host organisms and results in fusion proteins that consist of the target protein joined by a linker to the 220 amino acids that compose the gst tag. 

Read More
 

Pharmaceutical stability testing and in-vitro diagnostics

Ensuring that pharmaceutical products reach the consumer without degradation during shipping and storage has led to the creation of stability testing guidelines. All pharmaceutical products must undergo rigorous and standardized stability tests before they are approved for sale around the world. This has not always been the case for components of In-Vitro Diagnostic (IVD) kits used in clinical and research laboratories worldwide.

Read More
 

Magnetic microbeads for cell, protein, and nucleic acid enrichment

Magnetic microbeads are used to enrich cells, proteins, and nucleic acids from complex samples using biomagnetic separation. The process requires a well-designed magnetic separation rack, and the beads need to be coated and functionalized in order to capture the desired target molecule. Magnetic microbeads are typically made of iron oxide (Fe3O4) also known as magnetite, and are 0.5 to 500 μm in diameter. The diameter of the microbeads is a function of the non-ferrous material composing the beads.(more information below). The microbeads are small enough that they are superparamagnetic, which means that they are inherently non-magnetic, but they become magnetized when placed into a magnetic field. This effect is reversible, and the magnetism disappears again after the microbeads are removed from the magnetic field.

Read More
 

Sonicator bath to resuspend aggregated magnetic beads

A sonicator bath is a tool that propagates ultrasonic waves through fluid contained within it. The ultrasonic bath is used in the laboratory to lyse cells, to degass water, and to break up clumped and aggregated magnetic beads, among many other uses. Ultrasonic cleaners are used to remove dirt and grime on objects that are hidden in difficult crevices that brushes or sprays cannot access. The most common fluid used in an ultrasonic bath or ultrasonic cleaner is distilled water. Other solvents may be added to help in cleaning processes, but in the laboratory, sonicator baths are almost always filled with distilled water. One must be careful when using solvents to ensure that they don’t have a low flash point as the ultrasonic waves will heat up the fluid in the bath. Sonicator baths work by applying ultrasonic waves to fluid. Ultrasonic waves are sound waves greater than 20 kHz; when propagated through fluid they bounce into air bubbles and cause them to burst. The shock wave released by bursting air bubbles helps to lyse cells, remove dirt from surfaces, or to break apart aggregated magnetic beads.

Read More
 

Hot gravity filtration and vacuum filtration in recrystallization

Recrystallization is the process of obtaining pure crystals of a compound from a solution containing impurities. Hot gravity filtration is commonly used to remove these impurities from a solution prior to recrystallization. Hot filtration is necessary for recrystallization when impurities exist in solution. Firstly, recrystallization requires a hot solution because the solution needs to be super saturation in order for crystals to form upon cooling. Secondly, the impurity may have different solubility in certain solvents than the compound to be crystallized. The idea is to choose a solvent that dissolves the compound to be crystallized upon heating, but the impurity doesn’t dissolve in the solvent at high temperatures. The impurity is then filtered out during the hot gravity filtration process.

Read More
 

BCA protocol for protein quantification

The BCA assay is used to quantify protein concentration by using bicinchoninic acid to identify copper ions reduced by protein in a biuret reaction. The BCA protocol requires a working solution mixed with the sample; when protein is present, the reaction produces a purple color that absorbs light at 562 nm and is quantified with a spectrophotometer. The BCA assay is similar to other protein quantification assays such as Lowry or Bradford assays. However, the biuret reaction of the BCA assay occurs between the nitrogens on the peptide backbone and copper as well as nitrogens on the amino acid side chains. The fact that the peptide backbone participates in the reaction means that the BCA assay is more consistent between proteins and is less dependent upon amino acid composition. The BCA protocol is simple and quick. If the sample is heated to 37°C, then the incubation time is only 30 minutes, and the absorbance measurement takes only a few minutes. The BCA assay is an excellent method for quantifying total protein concentration after biomagnetic protein purification.

Read More
 

Multiplex Elisa immunoassay

Multiplex immunoassays enable the detection of multiple different analytes in the same sample. A well-designed multiplex assay could mean that only one vial of blood might need to be drawn from a patient instead of 8 or more vials. Therefore, one multiplex test can answer multiple questions at the same time. Immunoassays capitalize upon the specific affinity between antibody and antigen. Some immunoassays use antigen as the probe in order to detect the binding of antibody target, while other immunoassays use antibody probes in order to detect antigen targets. Most immunoassays are single-plex, meaning that they can only be used to detect one antibody-antigen pair at a time; this is generally the case with most ELISA (Enzyme Linked ImmunoSorbent Assay) tests. The idea of a multiplex ELISA is attractive, and it mostly indicates a type of multiplex immunoassay that relies upon antibody-antigen binding events. The traditional ELISA is single-plex, and requires multiple binding and washing steps as well as an enzymatic system that produces a colorimetric or chemiluminiscent label as a quantitative readout of target concentration in a sample. 

Read More

Leave a comment