Nueva llamada a la acción

Blog

 

Protein Extraction

Protein extraction is a key step for many proteomics research procedures, from ELISA to Western Blot. Proteins form the basis of all cells, tissue, and organisms. Proteins also initiate and mediate the thousands of biochemical pathways that govern an organism’s function. Biomedical studies of proteins can reveal information about pathways of disease, and the expression of the genetic code. But before proteins can be studied, they need to be extracted. Choosing the most appropriate protein extraction method is key to successful protein extraction.

Read More
 

Immunomagnetic cell separation

Isolation and detection of a target molecule in cell therapeutics from a sample with high background debris or unwanted moleculesisa challenging task. Immunomagnetic-based separation is the most feasible technique to overcome the problems that come with the separation of cells and biomolecules from a complex matrix.

Read More
 

Purification Techniques

The earliest chemists were on the hunt for new elements to add to the periodic table. Most of the chemistry that they were interested in doing was purification with the end goal of reaching a pure elemental substance. These chemists relied on a litany of methods—filtration, evaporation, distillation, and crystallization were some of the most used purification techniques for these discoveries. As the chemists were defining the elements, the biologists were trying to understand the human body, the cell, cellular organelles, and microbes. The point here is that in order to develop anything new we must first understand what everything is made of at the most basic and pure level. In modern science this means that we are trying to define matter beyond subatomic particles and we are attempting to map out every molecular pathway of disease. Our efforts to define complex systems by their purest constituents are rewarded by deep understanding and an ability to mimic, to engineer, develop, and create.

Read More
 

Magnetic Nanoparticle Fluorescent Imaging

A fluorescent nanoparticle is a small particle containing a fluorophore that can be used to label biological material, such as a specific cell or tissue under fluorescence imaging. There are generally two locations for the particles to probe: ones that bind to the surface and others that bind internally. A large array of different nanoparticles can be used to achieve this, including but not limited to fluorescently doped silicas and sol-gels, hydrogels, hydrophobic organic polymers, and quantum dots. There are currently three main techniques for fluorescent problem.

Read More
 

High molecular weight DNA: extraction using magnetic beads

Long read sequencing is making chromosome-scale assemblies, including diploid genomes, possible and is therefore improving our understanding of human genetic variation. But rapid improvements in long read sequencing capacity have been limited by the extraction of high molecular weight DNA. Magnetic bead-based high molecular weight DNA extraction limits DNA fragmentation, and is also less laborious and more cost-effective than other methods.

Read More
 

Protein purification system

Proteins are large, complex biomolecules that perform a vast range of vital molecular functions in living organisms. Studies of the structure and function of proteins are helping to advance understanding of biology, but before proteins can be studied, they need to be isolated (i.e., purified). The best protein purification system for your application depends on the desired throughput, scale, and downstream application.

Read More
 

Sepmag sponsors the UAB Nanoscience and Nanotechnology award (“Ciències Excel·leix"program).

The Faculty of Science celebrated the Ciències excel·leix Award ceremony on the last
December 16th. The aim of this program is to recognize and support outstanding first year students from the different Science degrees offered by the faculty.

Read More
 

Scaling up – common problems

The variation in magnetic force with distance when using classical magnetic separators is rarely problematic at small volumes. The short distance between the farthest beads and the magnet means that even with the mild magnetic forces generated by a small permanent magnet, separation time is fast and the efficiency is high.

Read More
 

Customizable Polymeric Bioparticles

With the recent innovations in nanofabrication, the use of a customizable bioparticle allows for many specified uses previously unimaginable for researchers. Highly sensitive purification, functional group modification or protection, and localized sensing are just a few specific applications that can be achieved using a customized bioparticle.

Read More
 

Agarose Resin Chromatography

Using Agarose Resin chromatography allows for a versatile, prepacked column that enables small-scale, high-resolution size exclusion chromatography for preparation, characterization, and analysis of proteins and other biomolecules.

Read More

Leave a comment